Heat TransferHEAT EXCHANGERSRev. 0Page 35HT-02Figure 12 Regenerative Heat ExchangerThe second is to reduce the temperature of the water entering the purification system prior toreaching the non-regenerative heat exchanger, allowing use of a smaller heat exchanger toachieve the desired temperature for purification. The primary advantage of a regenerative heatexchanger application is conservation of system energy (that is, less loss of system energy dueto the cooling of the fluid).CoolingTowersThe typical function of a cooling tower is to cool the water of a steam power plant by air thatis brought into direct contact with the water. The water is mixed with vapor that diffuses fromthe condensate into the air. The formation of the vapor requires a considerable removal ofinternal energy from the water; the internal energy becomes "latent heat" of the vapor. Heat andmass exchange are coupled in this process, which is a steady-state process like the heat exchangein the ordinary heat exchanger.Wooden cooling towers are sometimes employed in nuclear facilities and in factories of variousindustries. They generally consists of large chambers loosely filled with trays or similar woodenelements of construction. The water to be cooled is pumped to the top of the tower where it isdistributed by spray or wooden troughs. It then falls through the tower, splashing down fromdeck to deck. A part of it evaporates into the air that passes through the tower. The enthalpyneeded for the evaporation is taken from the water and transferred to the air, which is heatedwhile the water cools. The air flow is either horizontal due to wind currents (cross flow) orvertically upward in counter-flow to the falling water. The counter-flow is caused by the
Integrated Publishing, Inc. - A (SDVOSB) Service Disabled Veteran Owned Small Business