Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
SHAPES AND FIGURES OF PLANE GEOMETRY Geometry SHAPES AND FIGURES OF PLANE GEOMETRY This chapter covers the  calculation of the perimeter and area of selected  plane figures. EO 1.3 STATE the definition of the following types of triangles: a. Equilateral b. Isosceles c. Acute d. Obtuse e. Scalene EO 1.4 Given  the  formula,  CALCULATE  the  area  and  the perimeter   of   each   of   the   following   basic   geometric shapes: a. Triangle b. Parallelogram c. Circle The  terms  and  properties  of  lines,  angles,  and  circles  may  be  applied  in  the  layout,  design, development, and construction of closed flat shapes.   A new term, plane, must be understood in order to accurately visualize a closed, flat shape.   A plane refers to a flat surface on which lies a straight line connecting any two points. A plane figure is one which can be drawn on a plane surface.   There are many types of plane figures encountered in practical problems.  Fundamental to most design and construction are three flat shapes: the triangle, the rectangle, and the circle. Triangles triangle is a figure formed by using straight line segments to connect three points that are not in a straight line.   The straight line segments are called sides of the triangle. Examples of a number of types of triangles are shown in Figure 8.   An  equilateral triangle  is one  in  which  all  three  sides  and  all  three  angles  are  equal.    Triangle  ABC  in  Figure  8  is  an example  of  an  equilateral  triangle.    An  isosceles  triangle  has  two  equal  sides  and  two  equal angles  (triangle  DEF).    A  right  triangle  has  one  of  its  angles  equal  to  90°  and  is  the  most important triangle for our studies (triangle GHI).   An acute triangle has each of its angles less than  90°  (triangle  JKL).    Triangle  MNP  is  called  a  scalene  triangle  because  each  side  is  a different length.   Triangle  QRS  is considered an  obtuse triangle  since it has one angle greater than 90°.  A triangle may have more than one of these attributes.  The sum of the interior angles in a triangle is always 180°. MA-03 Page 6 Rev. 0


Privacy Statement - Copyright Information. - Contact Us

Integrated Publishing, Inc.
9438 US Hwy 19N #311 Port Richey, FL 34668

Phone For Parts Inquiries: (727) 755-3260
Google +