CENTRIFUGAL PUMP OPERATIONDOE-HDBK-1018/1PumpsIt may also be possible to stop cavitation by reducing the NPSHR for the pump. The NPSHR isnot a constant for a given pump under all conditions, but depends on certain factors. Typically,the NPSHR of a pump increases significantly as flow rate through the pump increases.Therefore, reducing the flow rate through a pump by throttling a discharge valve decreasesNPSHR. NPSHR is also dependent upon pump speed. The faster the impeller of a pump rotates,the greater the NPSHR. Therefore, if the speed of a variable speed centrifugal pump is reduced,the NPSHR of the pump decreases. However, since a pump's flow rate is most often dictatedby the needs of the system on which it is connected, only limited adjustments can be madewithout starting additional parallel pumps, if available.The net positive suction head required to prevent cavitation is determined through testing by thepump manufacturer and depends upon factors including type of impeller inlet, impeller design,pump flow rate, impeller rotational speed, and the type of liquid being pumped. Themanufacturer typically supplies curves of NPSHR as a function of pump flow rate for a particularliquid (usually water) in the vendor manual for the pump.CentrifugalPumpCharacteristicCurvesFor a given centrifugal pump operating at a constant speed, the flow rate through the pump isFigure 11 Centrifugal Pump Characteristic Curvedependent upon the differential pressure or head developed by the pump. The lower the pumphead, the higher the flow rate. A vendor manual for a specific pump usually contains a curveof pump flow rate versus pump head called a pump characteristic curve. After a pump isinstalled in a system, it is usually tested to ensure that the flow rate and head of the pump arewithin the required specifications. A typical centrifugal pump characteristic curve is shown inFigure 11.There are several terms associated with the pump characteristic curve that must be defined.Shutoff headis the maximum head that can be developed by a centrifugal pump operating at aset speed. Pump runout is the maximum flow that can be developed by a centrifugal pumpwithout damaging the pump. Centrifugal pumps must be designed and operated to be protectedfrom the conditions of pump runout or operating at shutoff head. Additional information maybe found in the handbook on Thermodynamics, Heat Transfer, and Fluid Flow.ME-03Rev. 0Page 14
Integrated Publishing, Inc. - A (SDVOSB) Service Disabled Veteran Owned Small Business