Heat Transfer HEAT EXCHANGERSFigure 10 Heat Exchanger Temperature ProfilesThe design of a parallel flow heat exchanger is advantageous when two fluids are required to bebrought to nearly the same temperature.The counter-flow heat exchanger has three significant advantages over the parallel flow design.First, the more uniform temperature difference between the two fluids minimizes the thermalstresses throughout the exchanger. Second, the outlet temperature of the cold fluid can approachthe highest temperature of the hot fluid (the inlet temperature). Third, the more uniformtemperature difference produces a more uniform rate of heat transfer throughout the heatexchanger.Whether parallel or counter-flow, heat transfer within the heat exchanger involves bothconduction and convection. One fluid (hot) convectively transfers heat to the tube wall whereconduction takes place across the tube to the opposite wall. The heat is then convectivelytransferred to the second fluid. Because this process takes place over the entire length of theexchanger, the temperature of the fluids as they flow through the exchanger is not generallyconstant, but varies over the entire length, as indicated in Figure 10. The rate of heat transfervaries along the length of the exchanger tubes because its value depends upon the temperaturedifference between the hot and the cold fluid at the point being viewed.Rev. 0 Page 33 HT-02
Integrated Publishing, Inc. - A (SDVOSB) Service Disabled Veteran Owned Small Business