HEAT EXCHANGERSHeat TransferNon-RegenerativeHeatExchangerApplications of heat exchangers may be classified as either regenerative or non-regenerative. Thenon-regenerative application is the most frequent and involves two separate fluids. One fluidcools or heats the other with no interconnection between the two fluids. Heat that is removedfrom the hotter fluid is usually rejected to the environment or some other heat sink (Figure 11).Figure 11 Non-Regenerative Heat ExchangerRegenerativeHeatExchangerA regenerative heat exchanger typically uses the fluid from a different area of the same systemfor both the hot and cold fluids. An example of both regenerative and non-regenerative heatexchangers working in conjunction is commonly found in the purification system of a reactorfacility. The primary coolant to be purified is drawn out of the primary system, passed througha regenerative heat exchanger, non-regenerative heat exchanger, demineralizer, back through theregenerative heat exchanger, and returned to the primary system (Figure 12).In the regenerative heat exchanger, the water returning to the primary system is pre-heated bythe water entering the purification system. This accomplishes two objectives. The first is tominimize the thermal stress in the primary system piping due to the cold temperature of thepurified coolant being returned to the primary system.HT-02 Page 34 Rev. 0
Integrated Publishing, Inc. - A (SDVOSB) Service Disabled Veteran Owned Small Business