BOILING HEAT TRANSFERHeat TransferFigure 13 Boiling Heat Transfer CurveFour regions are represented in Figure 13. The first and second regions show that as heat fluxincreases, the temperature difference (surface to fluid) does not change very much. Better heattransfer occurs during nucleate boiling than during natural convection. As the heat flux increases,the bubbles become numerous enough that partial film boiling (part of the surface beingblanketed with bubbles) occurs. This region is characterized by an increase in temperaturedifference and a decrease in heat flux. The increase in temperature difference thus causes totalfilm boiling, in which steam completely blankets the heat transfer surface.DeparturefromNucleateBoilingandCriticalHeatFluxIn practice, if the heat flux is increased, the transition from nucleate boiling to film boiling occurssuddenly, and the temperature difference increases rapidly, as shown by the dashed line in thefigure. The point of transition from nucleate boiling to film boiling is called the point ofdeparture from nucleate boiling, commonly written as DNB. The heat flux associated with DNBis commonly called the critical heat flux (CHF). In many applications, CHF is an importantparameter.HT-02 Page 42 Rev. 0
Integrated Publishing, Inc. - A (SDVOSB) Service Disabled Veteran Owned Small Business