ATOMIC NATURE OF MATTER
DOE-HDBK-1019/1-93
Atomic and Nuclear Physics
Solution:
The name of the element can be found from the Periodic Table (refer to Chemistry
Fundamentals Handbook) or the Chart of the Nuclides (to be discussed later). The
number of protons and electrons are equal to Z. The number of neutrons is equal
to Z - A.
Nuclide
Element
Protons
Electrons
Neutrons
1
1
H
hydrogen
1
1
0
10
5
B
boron
5
5
5
14
7
N
nitrogen
7
7
7
11
4
4
8
Cd
cadmium
48
48
66
23
9
9
4
Pu
plutonium
94
94
145
Isotopes
Isotopes are nuclides that have the same atomic number and are therefore the same element, but
differ in the number of neutrons. Most elements have a few stable isotopes and several unstable,
radioactive isotopes. For example, oxygen has three stable isotopes that can be found in nature
(oxygen-16, oxygen-17, and oxygen-18) and eight radioactive isotopes. Another example is
hydrogen, which has two stable isotopes (hydrogen-1 and hydrogen-2) and a single radioactive
isotope (hydrogen-3).
The isotopes of hydrogen are unique in that they are each commonly referred to by a unique
name instead of the common chemical element name. Hydrogen-1 is almost always referred to
as hydrogen, but the term protium is infrequently used also. Hydrogen-2 is commonly called
deuterium and symbolized 21 D. Hydrogen-3 is commonly called tritium and symbolized 31 T. This
text will normally use the symbology 21 H and 31 H for deuterium and tritium, respectively.
Atomic and Nuclear Radii
The size of an atom is difficult to define exactly due to the fact that the electron cloud, formed
by the electrons moving in their various orbitals, does not have a distinct outer edge. A
reasonable measure of atomic size is given by the average distance of the outermost electron
from the nucleus. Except for a few of the lightest atoms, the average atomic radii are
approximately the same for all atoms, about 2 x 10
-8
cm.
Like the atom the nucleus does not have a sharp outer boundary. Experiments have shown that
the nucleus is shaped like a sphere with a radius that depends on the atomic mass number of the
atom. The relationship between the atomic mass number and the radius of the nucleus is shown
in the following equation.
NP-01
Page 6
Rev. 0