ELECTRICAL TERMINOLOGY
Basic Electrical Theory
Voltage
The basic unit of measure for potential difference is the volt (symbol V), and, because the volt
unit is used, potential difference is called voltage. An objects electrical charge is determined
by the number of electrons that the object has gained or lost. Because such a large number of
electrons move, a unit called the "coulomb" is used to indicate the charge. One coulomb is equal
to 6.28 x 1018 (billion, billion) electrons. For example, if an object gains one coulomb of
negative charge, it has gained 6,280,000,000,000,000,000 extra electrons. A volt is defined as
a difference of potential causing one coulomb of current to do one joule of work. A volt is also
defined as that amount of force required to force one ampere of current through one ohm of
resistance. The latter is the definition with which we will be most concerned in this module.
Current
The density of the atoms in copper wire is such that the valence orbits of the individual atoms
overlap, causing the electrons to move easily from one atom to the next. Free electrons can drift
from one orbit to another in a random direction. When a potential difference is applied, the
direction of their movement is controlled. The strength of the potential difference applied at each
end of the wire determines how many electrons change from a random motion to a more
directional path through the wire. The movement or flow of these electrons is called electron
current flow or just current.
To produce current, the electrons must be moved by a potential difference. The symbol for
current is (I). The basic measurement for current is the ampere (A). One ampere of current is
defined as the movement of one coulomb of charge past any given point of a conductor during
one second of time.
If a copper wire is placed between two charged objects that have a potential difference, all of the
negatively-charged free electrons will feel a force pushing them from the negative charge to the
positive charge. This force opposite to the conventional direction of the electrostatic lines of
force is shown in Figure 9.
ES-01
Page 10
Rev. 0