Radiation DetectorsGEIGER-MÜLLER DETECTORThe number of electrons collected by a gas-filled detector varies as applied voltage is increased.Once the voltage is increased beyond the proportional region, another flat portion of the curveis reached; this is known as the Geiger-Müller region. The Geiger-Müller region has twoimportant characteristics:The number of electrons produced is independent of applied voltage.The number of electrons produced is independent of the number of electrons producedby the initial radiation.This means that the radiation producing one electron will have the same size pulse as radiationproducing hundreds or thousands of electrons. The reason for this characteristic is related to theway in which electrons are collected.When a gamma produces an electron, the electron moves rapidly toward the positively chargedcentral wire. As the electron nears the wire, its velocity increases. At some point its velocityis great enough to cause additional ionizations. As the electrons approach the central wire, theadditional ionizations produce a larger number of electrons in the vicinity of the central wire.As discussed before, for each electron produced there is a positive ion produced. As the appliedvoltage is increased, the number of positive ions near the central wire increases, and a positivelycharged cloud (called a positive ion sheath) forms around the central wire. The positive ionsheath reduces the field strength of the central wire and prevents further electrons from reachingthe wire. It might appear that a positive ion sheath would increase the effect of the positivecentral wire, but this is not true; the positive potential is applied to the very thin central wire thatmakes the strength of the electric field very high. The positive ion sheath makes the central wireappear much thicker and reduces the field strength. This phenomenon is called the detector’sspace charge. The positive ions will migrate toward the negative chamber picking up electrons.As in a proportional counter, this transfer of electrons can release energy, causing ionization andthe liberation of an electron. In order to prevent this secondary pulse, a quenching gas is used,usually an organic compound.The G-M counter produces many more electrons than does a proportional counter; therefore, itis a much more sensitive device. It is often used in the detection of low-level gamma rays andbeta particles for this reason. Electrons produced in a G-M tube are collected very rapidly,usually within a fraction of a microsecond. The output of the G-M detector is a pulse charge andis often large enough to drive a meter without additional amplification. Because the same sizepulse is produced regardless of the amount of initial ionization, the G-M counter cannotdistinguish radiation of different energies or types. This is the reason G-M counters are notadaptable for use as neutron detectors. The G-M detector is mainly used for portableinstrumentation due to its sensitivity, simple counting circuit, and ability to detect low-levelradiation.Rev. 0 Page 43 IC-06
Integrated Publishing, Inc. - A (SDVOSB) Service Disabled Veteran Owned Small Business