MODES OF RADIOACTIVE DECAY
DOE-HDBK-1019/1-93
Atomic and Nuclear Physics
NP-01
Page 26
Rev. 0
Gamma Emission ( )
Gamma radiation is a high-energy electromagnetic radiation that originates in the nucleus. It is
emitted in the form of photons, discrete bundles of energy that have both wave and particle
properties. Often a daughter nuclide is left in an excited state after a radioactive parent nucleus
undergoes a transformation by alpha decay, beta decay, or electron capture. The nucleus will drop
to the ground state by the emission of gamma radiation.
Internal Conversion
The usual method for an excited nucleus to go from the excited state to the ground state is by
emission of gamma radiation. However, in some cases the gamma ray (photon) emerges from the
nucleus only to interact with one of the innermost orbital electrons and, as a result, the energy of the
photon is transferred to the electron. The gamma ray is then said to have undergone internal
conversion. The conversion electron is ejected from the atom with kinetic energy equal to the
gamma energy minus the binding energy of the orbital electron. An orbital electron then drops to
a lower energy state to fill the vacancy, and this is accompanied by the emission of characteristic
x-rays.
Isomers and Isomeric Transition
Isomeric transition commonly occurs immediately after particle emission; however, the nucleus may
remain in an excited state for a measurable period of time before dropping to the ground state at its
own characteristic rate. A nucleus that remains in such an excited state is known as a nuclear isomer
because it differs in energy and behavior from other nuclei with the same atomic number and mass
number. The decay of an excited nuclear isomer to a lower energy level is called an isomeric
transition. It is also possible for the excited isomer to decay by some alternate means, for example,
by beta emission.
An example of gamma emission accompanying particle emission is illustrated by the decay of
nitrogen-16 below.