CORROSION THEORY
DOE-HDBK-1015/1-93
Corrosion
CH-02
Rev. 0
Page 4
TABLE 1
Electromotive - Force Series (77?F)
Element
Electrode
Standard Electrode
Reaction
Potential, v
Sodium
Na Na + e
-2.712
+
Magnesium
Mg Mg + 2e
-2.34
++
Beryllium
Be Be + 2e
-1.70
++
Aluminum
Al Al
+ 3e
-1.67
+++
Manganese
Mn Mn + 2e
-1.05
++
Zinc
Zn Zn + 2e
-0.762
++
Chromium
Cr Cr
+ 3e
-0.71
+++
Iron
Fe Fe
+ 3e
-0.44
+++
Cadmium
Cd Cd + 2e
-0.402
++
Cobalt
Co Co + 2e
-0.277
++
Nickel
Ni Ni + 2e
-2.250
++
Tin
Sn Sn + 2e
-0.136
++
Lead
Pb Pb + 2e
-0.126
++
Hydrogen
H 2H + 2e
0.000 (reference)
+
Copper
Cu Cu + 2e
+0.345
++
Copper
Cu Cu + e
+0.522
+
Silver
Ag Ag + e
+0.800
+
Platinum
Pt Pt + 2e
+1.2
++
Gold
Au Au
+ 3e
+1.42
+++
The surface of any metal is a composite of a very large number of micro-electrodes, as illustrated
in Figure 2. In order for corrosion to occur, the micro-cells must also be connected through
some conducting path external to the metal. Usually the external connection is provided by
water or an aqueous solution and the cells produce a current, allowing the chemical reactions
responsible for corrosion to proceed.