ENERGY RELEASE FROM FISSION
DOE-HDBK-1019/1-93
Atomic and Nuclear Physics
Because the 10 MeV of neutrino energy shown in Table 7 is not absorbed in the reactor, the
average value of 200 MeV per fission is still accurate. Note in Table 6 that some fission
neutrons undergo radiative capture and the resultant gamma ray emission provides an additional
10 MeV of instantaneous energy, which contributes to the total of 187 MeV instantaneous
energy.
All of the energy released, with the exception of the neutrino energy, is ultimately transformed
into heat through a number of processes. The fission fragments, with their high positive charge
and kinetic energy, cause ionization directly as they rip orbital electrons from the surrounding
atoms. In this ionization process, kinetic energy is transferred to the surrounding atoms of the
fuel material, resulting in an increase in temperature. The beta particles and gamma rays also
give up their energy through ionization, and the fission neutrons interact and lose their energy
through elastic scattering. Of the 200 MeV released per fission, about seven percent (13 MeV)
is released at some time after the instant of fission. When a reactor is shut down, fissions
essentially cease, but energy is still being released from the decay of fission products. The heat
produced by this decay energy is referred to as "decay heat." Although decay energy represents
about seven percent of reactor heat production during reactor operation, once the reactor is shut
down the decay heat production drops off quickly to a small fraction of its value while operating.
The decay heat produced is significant, however, and systems must be provided to keep the
reactor cool even after shutdown.
Summary
The important information in this chapter is summarized below.
Energy Release From Fission Summary
Fission products have some general characteristics in common.
They generally decay by b- emission.
The most common mass numbers are grouped near 95 and 140.
The energy released by fission can be calculated based on the difference in mass
between the masses of the reactants before fission and the fission fragments and
fission neutrons after fission.
Another method to determine the energy released by fission is based on the
change in binding energy per nucleon between the fissile nuclide and the fission
products.
NP-01
Page 62
Rev. 0